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Abstract 
Data-intensive applications are becoming increasingly 
common in Grid environments. These applications 
require enormous volume of data for the computation. 
Most conventional meta-scheduling approaches are 
aimed at computation intensive application and they do 
not take data requirement of the applications into 
account, thus leading to poor performance. Efficient 
scheduling of data-intensive applications in Grid 
environments is a challenging problem. In addition to 
process utilization and average turnaround time, it is 
important to consider the worst-case turnaround time in 
evaluating the performance of Grid scheduling 
strategies. In this paper, we propose an adaptive 
scheduling scheme that takes into account both the 
computational requirements and the data requirements 
of the jobs while making scheduling decisions. In our 
scheme, data transfer is viewed in par with computation 
and explicitly considered when scheduling. Jobs are 
dispatched to the sites that are optimal in terms of both 
data transfer time and computation time. In addition, 
our scheme overlaps a job’s data transfer time with its 
own queuing time and other jobs’ computation time as 
much as possible. Trace-based simulations show that the 
proposed scheme can gain significant performance 
benefits for data-intensive jobs.  

I. INTRODUCTION 
    In scientific research communities, more and 
more large-scale scientific experiments generate 
and process data on the order of terabytes or even 
petabytes. For example, four high energy physics 
experiments at CERN produce and process several 
petabytes of data per year, and this process is 
expected to last 15 to 20 years [1]. These “data-
intensive applications” require large-scale data 
storage and computation resources, which typical-
ly are geographically distributed. The applications 
usually need to move data to the computation site 
for processing. Data movement time can range 
from a couple of seconds to hours or even days [2]. 
     Grid computing [3] enables users to harness 
distributed heterogeneous resources to solve com-
plex problems. Metaschedulers [4][15] play a key 
role in Grid computing, dispatching jobs submitted 
to the Grid to different sites for execution and 
monitoring their running.                                                                                       

    Conventional metascheduling approaches con-
sider computation requirements alone to schedule 
jobs and not consider data requirements in which 
case the data movement should be coupled to-
gether with the computation and thus the com-
putational resources need to be allocated during 
data transfer. This approach has several draw-
backs. Typically, the computational sites on the 
Grid have dedicated nodes for doing data transfers, 
and a file system that is shared by the com-
putational nodes and the data servers. For example, 
the individual computational sites on national Grid 
infrastructures such as TeraGrid, Open Science 
Grid run GridFTP on dedicated nodes for data 
transfer and have a shared parallel file system that 
is accessible to the GridFTP servers as well the 
computational nodes. Thus, the data transfer does 
not require any resources on the compute nodes. 
So, when the metascheduler is not data aware and 
the data movement is done as part of the com-
putation, the computational resources are essential-
ly wasted for the duration of the data transfer. 
Also, in Grid environments network conditions 
vary a lot for different sites. Without knowledge of 
data requirements, the metascheduler cannot make 
an optimal selection of the computational resource 
for the jobs, which leads to poor performance, like 
low resource utilization, long job turn around time. 
    In some metaschedulers that are data aware such 
as GridWay [15] and DAGMan [16], the data is 
transferred by the metascheduler to a com-
putational site before the job is submitted to the 
local scheduler. This approach improves resource 
utilization but has several drawbacks as well. 
When a computational site is picked, it is picked 
only based on the computation aspects of the job 
and not based on the data aspects. A site that will 
take the longest time (among all the available 
sites) to transfer the data might be picked. Also, 
the job is not queued at the local site until the data 
transfer is done.  
    We propose an adaptive metascheduling scheme 
to improve the turnaround time of data-intensive 
applications and to optimize the resource uti-
lization. There are two key ideas in our scheme: 1) 
take into account both the computational require-
ments and the data requirements of the jobs while 



making scheduling decisions, and try to get best 
resources for a job based on that comprehensive 
consideration; 2) overlap the data transfer time for 
a job with the queuing time of the job and/or the 
computation time of other jobs.  Specifically 
speaking, in our scheme, data transfer is viewed 
equally with computation and explicitly considered 
when scheduling. Jobs are dispatched to the sites 
that can finish it earliest based on both the data 
transfer time and computation time. In addition, as 
soon as a job is put into the queue of a local 
scheduler, data transfer is started immediately so 
that the job’s data transfer time is overlapped with 
its own queuing time and other jobs’ computation 
time to a maximum extent.  
      The paper is organized as follows. In Section 
2, we review previous work related in scheduling 
of data-intensive applications; In Section 3, the 
proposed metascheduling scheme is described and 
analyzed; trace-based simulation results and 
analysis are presented in Section 4. We present our 
conclusions and describe future work in Section 5. 

II. RELATED WORK 
    Subramani et al. [5] proposed a greedy meta-
scheduling algorithm based on multiple simul-
taneous requests. The metascheduler identifies the 
sites that can start the job earliest. This approach is 
suitable only for homogeneous resources, howe-
ver, and does not take data requirements into 
account.  
    In [6], Wäldrich et al. proposed a meta-
scheduler that co-allocates arbitrary types of re-
sources; the goal of this work is to allocate 
multiple kinds of resource with specific QoS re-
quirements in a certain sequence with con-
sideration of heterogeneity and different site 
policies. However, this work has no special 
consideration for data-intensive applications. 
    Ranganathan et al. [7] developed a family of 
job-scheduling and data-movement algorithms for 
data-intensive applications. Data replica is used to 
improve performance. In this work, computation 
scheduling and data scheduling (data replication 
strategies) are independent; they do not incur-
porate with each other to get best resources for a 
job.   
    Chameleon [8] is a resource broker developed 
for data grid environment. It proposes a family of 
cost models in terms of job-turnaround time. When 
a job is submitted, the scheduler uses the cost 
models to decide how to schedule the job; either 
the application code or data can be moved to get 
the best scheduling performance. 
     Bent et al. [9] discussed the scheduling of a 
collection of jobs with data requirements. They 
extended the Condor ClassAd mechanism to 
enable the worker node to include information on 
the files available on the node. This work is 

designed for cluster environments, however; it is 
not suitable for more distributed Grid computing. 
In addition, their goal is to maximize throughput 
while minimizing data movement costs, whereas 
our goal is to improve job turnaround time. 
    Venugopal et al. [10] developed a Grid service 
broker for data-intensive applications. Their 
objective is similar with that of our work in this 
paper, and they considered the situation where 
there are multiple replicas for a data file. The 
computation resource and data resource pair is also 
selected in order to minimize job turnaround time. 
However, they don’t consider overlapping the data 
transfer time with queuing time/computation time.  
     In job shop scheduling [11][12], both job 
accounts and machine accounts are finite. Each job 
is composed of several operations, which must be 
processed in an orderly fashion. A schedule is a 
mapping from operations to machines. Job shop 
scheduling is NP-complete, and heuristics are 
widely used. Though the data stage-in, compu-
tation and data stage-out can be thought of as 
sequential operations of a data intensive job, 
multiple data movement operations can be carried 
out simultaneously on the same resource and thus 
the scheduling of data intensive jobs does not 
directly map to job shop scheduling.  
    In data diffusion [13], when the dispatcher 
receives a job, it attempts to dispatch this job to a 
resource that has cached the data needed by the 
job. The job will first try to get data that is not 
cached on the execution resource from its peer 
resources. Only if no cache is available does the 
job get its data from persistent storage. Often, 
however, each job requires different data for 
processing; cached data is not used by subsequent 
jobs. In that case, jobs have to request data from 
the data storage site, and the scheduling policy in 
data diffusion is not able to improve performance 
much. 
    Stork [2][14] considered data placement acti-
vity a first-class citizen in the Grid. It is capable of 
queuing, scheduling, monitoring and managing 
data placement activities. Stork accepts data 
placement jobs and executes them according to a 
given scheduling policy (e.g., FCFS, shortest job 
first, random). Stork is only a data placement 
scheduler, it interacts with execution planner and 
batch scheduler for job scheduling. It can not 
overlap data placement activity with computation 
activity. 

III. PROPOSED SCHEDULING SCHEME 
    Our meta-scheduling strategy takes into account 
not only computation resource requirements but 
also data requirements (storage space, network 
condition, etc.) when making scheduling decisions. 
It ensures that the resource that possesses very 
powerful processors but bad network conditions to 



the data source is not selected. Furthermore, data is 
staged into the computational site while the job is 
waiting in the queue, and staged out after the 
computation resource is released. 
     Figure 1 illustrates the benefits of the proposed 
idea from individual job’s perspective; it tries to 
overlap a job’s data transfer time with its queuing 
time. Figure 1(a) shows the conventional execution 
model in which the scheduler is not data aware. 
The job waits in the queue until it gets enough 
resources to execute. Once the job starts, it fetches 
the input data from a remote location, performs the 
computation, and transfers the output data to a 
remote location. Since the data stage-in, stage-out 
is conducted by the job itself, computational 
resources are allocated to the job even during the 
data movement. Thus, the computational resources 
are wasted during the data transfer. Figure 1(b) 
shows the approach in which data is staged in 
before job submission by the metascheduler and 
staged out by metascheduler after job completion. 
It can improve resource utilization than the 
previous one. However, this approach does not 
take data requirements into account when making 
scheduling decisions; queuing time is not utilized 
as well.  
     Figure 1(c) shows the execution model of our 
proposed scheme. Here, scheduling decisions are 
made based on both computation requirements and 
data requirements. The data stage-in time for a job 
is overlapped with its own queuing time and with 
the computation time of other jobs. The data stage-
out time is overlapped with the computation time 
of other jobs. Our scheme attempts to reduce the 
job turnaround time by decoupling the data stage-
in and stage-out from the job execution and at the 
same time tries to maximize the utilization of 
computational resources. It calculates the data 
transfer time for each computational site based on 
the prevailing available bandwidth and uses that 
time to select the appropriate resource for the jobs. 
    The benefits of the proposed scheme from the 
resource perspective are illustrated in Figure 2. For 
simplicity, let us assume that all jobs in this 
illustration require all processors of the compu-
tation site. We can see that job2 can conduct its 
data transfer when job1 is running; job3 can 
conduct its data transfer when job1 and job2 are 
running, since now data transfer is not a part of job 
execution but is done by the scheduler, and the 
computational resources are not allocated during 
data transfer. As a result, the turnaround time of 
job is shortened, and resource utilization is also 
improved. 
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Figure 1. From the individual job’s perspective, 
the proposed scheme can overlap the queuing 

time and data transfer time. 

  Figure 3 demonstrates the interaction between 
the metascheduler and local scheduler. When a job 
is submitted to the metascheduler, the following 
information is required: input data location, input 
data size, output data location, output data size (if 
known), computational requirements, and estimat-
ed runtime. The metascheduler first passes the job 
description to each local scheduler and queries for 
an estimate of when the job can be finished. Using 
the information received from the metascheduler, 
each local scheduler first estimates available 
bandwidth from local site to the data source 
(where the input data required for the computation 
is located) and to the data sink (where the data 
generated by the computation needs to be trans-
ferred to). This estimate can be obtained either by 
using historical information or through a network 
monitoring services such as perfSONAR [23] or 
NWS [24]. It’s notable that due to highly dynamic 
nature of real network, it’s impossible to predict 
the data transfer time accurately. It’s quite possible 
that data transfer completes earlier or later than 
expected. We will consider this factor in our future 
work. Currently, we assume that available 
bandwidth remains static for the duration of a 
single transfer. It certainly varies from one transfer 
to another. 
    Assume job J is submitted to the metascheduler 
at time T0. Dstagein, Dstageout are denoted as input 
data size and output data size respectively. Let 
Bstagein be the estimated stage-in bandwidth and 
Bstageout 

     T

be the estimated stage-out bandwidth. 
Time to stage the data in and out is calculated as 

stagein = Dstagein /Bstagein       
     T

    (1) 
stageout = Dstageout /Bstageout                      

Earliest time the job can be started at the local site 
can be expressed as 

(2) 

     T1 = T0 + Tstagein+δ              (3)  



whereδis the time it takes for the metascheduler 
to dispatch the job to a local scheduler. 
Let Tstart (Tstart>= T1) 

T

be the guaranteed start time 
of the job. Then the earliest finish time for the job 
is 

finish = Tstart + Tuser_est + Tstageout             
where T

  (4) 
user_est is the estimated run time for the job. 

Tfinish
 

 is returned to the metascheduler.  
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Figure 2. From the resource perspective, the 
proposed scheme can overlap data transfer 
time for a job with the computation time of 

other jobs. 
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Figure 3. Interaction between the 
metascheduler and local scheduler. 

    After collecting a response from each local 
scheduler, the metascheduler picks the site that can 
finish the job earliest and dispatches the job to that 
site. Upon receiving the job, the local scheduler 
initiates the data movement immediately and 
makes an advance reservation for the job.  
    Backfilling [17][18][19] is a widely used and 
effective optimization approach in scheduling. The 
backfill algorithm in our scheme takes data move-
ment into account. When a job has a chance to be 
backfilled, its required data may not have been 
transferred completely. Under such circumstances, 
the backfill algorithm should check whether the 
idle resource hole is big enough to accommodate 
the computation time and the remaining data tran-
sfer time. If it is big enough, the job will be 
successfully backfilled; otherwise, the job will not 
be backfilled. 
     Since our metascheduling scheme values job 
turnaround time most, it also backfills jobs whose 
data movement is in progress, in order to have the 
chance to finish the job as soon as possible. The 

cost is that some processor time will be wasted. On 
the other hand, because of the separation of data 
movement and computation, the processor time 
required by the job is shorter than that of 
conventional approaches. Hence, it is easier to find 
a backfill opportunity, especially for jobs whose 
computation time is short and data movement time 
is long. To verify the effectiveness of this backfill 
policy, we experimentally compared it with a 
backfill policy that backfills only those jobs that 
either have no data requirements or the entire data 
required has been transferred already. The results 
showed that our backfill policy can get up to 7% 
improvement in average turnaround time, and only 
1% loss in CPU utilization.  

IV. PERFORMANCE EVALUATION 
  In this section we compare our scheme 
(finish_time_data_aware) with two other meta-
scheduling schemes. One scheme is data aware, as 
is our scheme, and selects the site that can finish 
the job earliest. It considers the data transfer time 
when determining the finish time for a job. 
However, the data transfer and computation still 
are tightly coupled – there is no overlap between 
data transfer time and queuing time or computation 
time. It is referred as “finish_time_no_overlap” in 
the figures. The other scheme is not data aware 
and picks the site that can start the job earliest. It is 
referred to as “start_time_no_data_aware” in the 
graphs. 

A.  Experiment Setup 
  Our performance evaluation uses a locally 
developed simulator that simulates the behavior of 
the metascheduler and local scheduler. This 
simulator incorporated conservative backfill and 
advance reservation techniques, and also simulates 
data movement. For simplicity sake, we do not 
split the data requirements of the jobs into input 
(stage-in) and output (stage-out) components in the 
experiments. Rather, we consider all the data 
requirements as input only. 
    The three metascheduling schemes are evaluated 
by using two realistic workload traces from 
Feitelson’s logs [20]. One trace is from the San 
Diego Supercomputing Center (SDSC) and the 
other from the Cornell Theory Center (CTC). We 
use a 5000-job contiguous subset of the traces. The 
number of processors required for the jobs in CTC 
and SDSC traces ranged from 1 to 129 and 1 to 
128, respectively. The execution times for the 
SDSC trace ranged from 1 second to 20 hours; for 
the CTC trace it ranged from 1 second to 4 days. 
    Five computation sites are simulated, having 
130, 64, 64, 128, and 32 nodes, respectively. The 
available bandwidth is calculated as a random 
value in the range between 10 Mbit/s and 100 
Mbit/s. Data transfer time for a job is calculated as 



Ttransfer

B. Evaluation Results 

 = data_size / available_bandwidth. Since 
the traces did not have data requirements for the 
jobs, we assume the data requirements for the jobs 
to be between 10 MB and 10 GB for one set of 
experiments. Since large-scale science applications 
deal with enormous volumes of data (on the order 
of terabytes and even petabytes), we evaluated 
various schemes for a larger data size range from 
10 MB to 800 GB. In all experiments, we assume 
50% of the jobs have data movement require-
ments. The proposed scheme is represented as 
“finish_time_data_aware” in the figures. Simu-
lation studies were performed under both normal 
and high loads. A high load condition was 
simulated by increasing the runtime of the jobs by 
a factor of 3. We use average turnaround time and 
utilization metrics to compare the three schemes. 
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Figure 4. Comparison of average turnaround 
time for the three schemes – CTC trace. 

    Figure 4 shows the average turnaround time of 
different schemes under both normal and heavy 
load for two different ranges of data requirements. 
In Figures 4 and 6, the values for the normal load 

bars is represented in the left y axis, and the values 
for the high load bars is represented in the right y 
axis. It is to be noted that only 50% of the jobs 
have data transfer requirements. We note that our 
proposed scheme outperforms the other two 
schemes, but when the data needs of the jobs is in 
the range of 10 MB to 10 GB, the improvement is 
not remarkable. The reason is that the computation 
time is dominant in this situation, and the data 
transfer time is small relative to the computation 
time. On the other hand, when the data needs of 
the jobs are in range of 10 MB to 800 GB, our 
scheme markedly outperforms the other two 
schemes. The average turnaround time of our 
scheme (“finish_time_data_aware”) is only about 
10% of that of “start_time_no_data_aware” and 
50% of that of “finish_time_no_overlap” scheme. 
The reason is that the data movement time is 
considerably more and there is much more overlap 
between queuing time, computation time and data 
transfer time within our scheme and thus 
performance gain is significant.           
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Figure 5. Comparison of processor utilization 
for the three schemes – CTC trace. 

  Figure 5 depicts the CPU utilization for the 
three schemes. Utilization is defined as follows: 



(total processing time for all jobs)/ 
∑(makespan*number of processors in local 
computational site). We note that the utilization is 
better for our scheme, and the difference is 
significant when the load is heavy or when the data 
needs are higher. 
      From Figure 4, we observe that “finish_time-
_data_aware” scheme significantly improves the 
average turnaround time. But from a practical 
point of view, the worst-case turnaround time is 
also important. A scheme that improves the 
average turnaround time but makes the worst-case 
turnaround time worse is not desirable.     
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(b) Data requirements of the jobs are in the 

range of 10 MB to 800 GB 
Figure 6. Comparison of worst turnaround time 

for the three schemes – CTC trace. 

    Figure 6 compares the worst-case turnaround 
time of the three schemes. We note that worst-case 
turnaround time for our scheme is much better 
than that for the other two schemes. Since 
“start_time_no_data_aware” simply picks up a site 
that is able to start the job earliest, without 
considering the finish time or the data needs, it 
may select a site that performs poorly, and thus the 
worst turnaround time for this scheme is far worse 
than that for the other two schemes. 

C. Impact of Accuracy of User Estimation 
Runtime 

    When a job is submitted, the job execution time 
specified by the user is generally much larger than 
the time actually needed [21][22]. To evaluate the 
impact of accuracy of user estimation to job 
execution time in the context of data-intensive 
application, we carried out the following experi-
ments. We set the user estimation runtime equals 
to the actual execution time and compared the 
results with the previous ones, in which the user 
estimation is not equal to actual execution time. 
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Figure 7.  Impact of user-estimation inaccuracy 
for the three schemes – CTC trace. 

    Figure 7 compares the performance of the three 
schemes when the user estimates are inaccurate 
with the performance when the user estimates are 
accurate. We see that the performance difference 
among the three schemes in the inaccurate estimate 
case is similar to that of the accurate estimate case. 
Figure 7b also shows that the performance of 
“start_time_no_data_aware” scheme is better 
when the user estimates are inaccurate. The reason 
is that the higher runtime for the jobs (as the data 



transfer time is embedded in the job runtime for 
the  “start_time_no_data_aware”) causes an incr-
eased load, and the inaccurate user-estimate 
improves the backfilling chances for the smaller 
jobs especially under heavy load. 
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.Figure 8. Comparison of average turnaround 
time for different data sizes with heavy load – 

CTC trace 
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Figure 9. Comparison of average turnaround 
time of the three schemes for varying 
proportions of jobs with data requirements – 
CTC trace. 
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time for the three schemes – SDSC trace with 

50% of the jobs having data requirements in the 
range of 10 MB to 800 GB. 

 

D. Impact of  Varying Data Requirements 
    Figure 8 compares the performance of the three 
schemes for varying data transfer requirements. 
We observe that the average turnaround time for 
our scheme remains flat for various data 
requirement ranges. This implies that almost all of 
the data movement can be overlapped with the 
queuing time and the computation time for the 
CTC trace, with 50% of the jobs having data 
movement needs and the data sizes ranging up to 
800 GB. 
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Figure 11. Comparison of CPU utilization for the 
three schemes – SDSC trace with 50% of the 

jobs having data requirements in the range of 
10 MB to 800 GB. 

 
    Figure 9 compares the performance of the three 
schemes for varying percentage of jobs that require 
data movement. We note that the average turn-
around time with our scheme increases as the 
percentage of jobs requiring data transfer in-
creases. The performance difference is biggest 
when all the jobs have data movement needs. 
    Because of space limitations, we show only the 
average turnaround time and processor utilization 
data for the SDSC trace. As noted from Figures 10 
and 11, the trends are similar to that of the CTC 
trace.  

V. CONCLUSIONS AND FUTURE WORK 
    We have explored the issue of scheduling data-
intensive jobs using job traces from supercomputer 
centers. We have proposed an adaptive data-aware 
scheduling scheme that takes into account not only 
computation requirements but also data require-
ments when making scheduling decisions. More-
over, our scheme is able to overlap the data 
transfer time of a job with its own queuing time 
and other jobs’ computation time. Trace-based 
simulation demonstrates that our proposed scheme 
provides significant improvements in average 
turnaround time and worst-case turnaround time 
for the jobs. It also provides better utilization of 
computational resources.  



     We plan to explore how data transfer failures, 
common in distributed environments, affect the 
scheduling decisions of our scheme. We also plan 
to research workflow applications that consist of 
multiple data-intensive jobs. The scheduler should 
schedule the jobs that share data to the same 
computational site. We intend to incorporate our 
scheme into a real metascheduler, conduct experi-
ments using real applications, and analyze the 
results. While doing so, we will integrate our 
metascheduling scheme with data cache and data 
replication services in the Grid, in order to 
optimize the scheduling decision process further. 
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